Evaluating Existential Threats, Part 4: Conclusions

youtube-Logo-4gc2reddit-logoOff the keyboard of Irv Mills

Follow us on Twitter @doomstead666
Friend us on Facebook

Originally Published on The Easiest Person to Fool  May 6, 2017


Discuss this article at the Kitchen Sink inside the Diner


Sunset Over Lake Huron, May 3, 2017

In the first 3 posts in this series ( 1, 2, 3) I talked about global catastrophic risks (the kind of things that threaten human well being on a global scale), and existential risks (which threaten us with extinction). Of course, the distinction between the two is only a matter of degree. We looked at how to evaluate such threats in general and then evaluated a number of specific threats, looking at:

  1. Risk: what is the likelihood of this happening?
  2. Severity: what are the consequences if this does happen?
  3. Difficulty: how hard will it be to do something about this?
  4. Timescale: how soon will this happen?

Just to get us quickly up to speed, here is the list of threats that I classified as worth worrying about:

  • collision with an asteroid (or comet)
  • massive solar flare (coronal mass ejection)
  • economic singularity
  • human sourced pandemic
  • biotechnology
  • ecological disaster
  • climate change
  • resource depletion
  • population and agricultural crises
  • warfare

The first two are not manmade (non-anthropogenic), although our vulnerability to the effects of a massive solar flare is mostly a result of our love of cheap electronics, and electrical grids and an internet that are not sufficiently hardened. For the non-anthropogenic threats I looked at all four of the factors to determine if there is cause for concern.

The rest of the list are manmade (anthropogenic). All of them present a high degree of risk and a high severity, and all but two (a human sourced pandemic and biotechnology) are already happening and very likely to intensify in the near future.

The Wikipedia article on catastrophic and existential risks that I've been referencing in this series of post adds up all the various risks and concludes that the likelihood of human extinction by 2100 is around 19%. This seems fairly reasonable to me, though I'd place lower probabilities on risks like artificial intelligence and nanotechnology and higher probabilities on climate change, resource depletion, ecological disaster, and population and agricultural crises.

But there is a big range of outcomes between extinction and business as usual, including various degrees of societal collapse, entailing loss of life, organization and technology. I would argue that some sort of collapse is very likely—essentially a certainty if we don't take some corrective action soon.

What I haven't done as yet, for these anthropogenic threats, is look at the difficulty of mounting such a response or the likelihood of its being successful. In order to do this, I think it would be helpful if we could make some sense of all these threats and how they fit together in an interconnected, systemic context. And that is the subject of this post.

If indeed there is nothing that can be done, then we should relax, quit worrying and try to enjoy the ride. But remember, these threats are manmade. We are causing the problems, so can't we just stop whatever it is we are doing wrong? I think we should at least consider it. If that won't work, another alternative would be to accept what is coming and take steps to adapt. And it seems to me that the things we might do to adapt are also things that will reduce the severity of the situation we are facing.

In addition to the major threats listed above, there are also a great many minor economic, social and political disruptions happening these days which do not seem catastrophic on a global scale but may well lead us to the "death of a thousand cuts". With all this going on it is very difficult to sort out cause and effect and determine what our response should be. Conventional wisdom would have us treat the symptoms, the surface disruptions, but remains unwilling to consider that there might be anything fundamentally wrong with the system as a whole.

As we shall see shortly, much of the activity that is causing our problems is economic activity. At the same time, as more and more aspects of our lives become "monetized", we are giving up the last vestiges of self sufficiency and becoming ever more dependent on the monetary economy for our continued survival. To be so dependent on the very thing that is causing our problems is not a good situation.

This being the case, I think it would be helpful to look to the science of economics for a deeper understanding of what's going on. Unfortunately conventional economics (Neo-classical economics or Chicago School economics, henceforth referred to as NCE) is hardly fit to be called a science at all. It violates a number of physical laws and is inconsistent with actual human behaviour. These folks would have us look at the economy as a perpetual motion machine, in which money and goods go around and around, with no reference to the physical and biological aspects of the world, or the realities of friction and entropy.

Figure 1

There a number of myths being propagated by NCE, and since policy decisions are based on these myths, they represent a serious handicap in our attempts to cope with the challenges facing us.

  • The real economy is subject to the forces and laws of nature, including thermodynamics, the conservation laws and various environmental requirements. NCE ignores these issues.
  • Economic production requires physical work and the energy required to perform that work is a significant input to the process. NCE counts only capital and labour as inputs and when it finds that these inputs don't add up to match the outputs, it attributes the difference to "technological change". But in fact, the discrepancy is nicely accounted for by including energy as a third input.
  • NCE ignores the economy's boundaries with the real world, disregarding the flow of energy and materials into the system and waste heat and degraded materials out of it, and any effects that those flows may have.
  • NCE holds that a successful economy must grow, despite the fact that we live on a finite planet. It refuses to acknowledge the existence of real limits to growth.
  • It is basic to the scientific method that theoretical models are tested and proved or modified to match reality before gaining acceptance. In NCE this is often not the case—policy is based on models that simply have not been validated.
  • NCE is based on the idea that human beings always behave in their own best interests. In fact this is clearly not so—people are both far more altruistic and far more vindictive than NCE allows for.
  • NCE equates consumption of market goods with human well-being. In fact, once basic needs are taken care of, further material acquisitions contribute relatively little to happiness.
  • NCE fails to consider the importance of how wealth is distributed in a society and the negative effects of inequality.

But there is a another branch of economics—"biophysical economics"—that I think has a lot more promise. It takes into account all the factors that are involved in the existential threats we are talking about, and does not commit the ideological errors about human beings that plague NCE. Figure 2 below is the biophysical version of Figure 1.

Figure 2

Figure 2 is the "interconnected, systemic context" that links all the anthropogenic threats together and makes sense of them. Before we talk in detail about how this works, we need to have a closer look at some ideas that may not be obvious from the diagram.

1) We are looking at a complex adaptive system here—it is complex in that its behavior as a whole is not predicted by the behavior of the components. It is adaptive in that the individual and collective behaviors change and self-organize in response to events, adapting to the changing environment and attempting to increase their survivability. It is not easy to predict the behaviour of such a system, especially from the inside. Nor is there any guarantee that this behaviour will always lead to positive outcomes. Especially in a case like ours, where the individuals are human beings and groups of human beings who are not well informed about the overall situation.

2) Both the Earth Systems and the Human Systems depicted in Figure 2 are also dissipative structures. Indeed, I would say that the key to understanding what is going on in our world is to realize that this is the case, and to grasp what it implies.

Living organisms (including human beings), ecologies and economies are dissipative structures. So are human societies. All these structures maintain themselves by taking in energy and materials and giving off waste of various sorts. They maintain a reproducible steady state, but this state is not a matter of equilibrium, indeed it is definitely not in an sort of "balance" at all. If the supply of energy and materials falls below the appropriate level, this state cannot be maintained—death and dissolution follow. On the other hand, if a surplus of energy is available, these systems grow and become more complex.

Perhaps the simplest analogy I can give is that of a toy balloon with a small leak. As long as we can keep pumping in air, we can keep the balloon inflated. To accomplish this it takes material resources (air) and energy (to pump the air). If either of these is not available the balloon soon deflates.

3) When you see the economy as a dissipative structure, it becomes clear why energy plays such a critical role. What may not be quite so clear is why cheap fossil fuels are particularly important. We'll get to that shortly.

Years ago I started out thinking that money was what made the economy work. And money certainly has it's uses—as a medium of exchange, a unit of account and a store of value. But money is really just a set of tokens representing something much more fundamental—energy.

There was a time when almost all the energy used to make goods came from muscles, human and/or animal. We gradually developed tools and machines which made better use of that muscle power, but the industrial revolution didn't really get going until we learned to convert other forms of energy into mechanical energy to drive those machines. Primarily the energy of falling water and moving air (wind) and the chemical energy stored in biomass and fossil fuels. Fossil fuels are a very concentrated source of energy and easy to move to where that energy is needed, so they quickly become very popular.

The other great thing about fossil fuels was that their price (basically just the cost of getting them out of the ground) was only a tiny fraction of their value in terms of the goods they could be used to produce. Thus the productivity of coal fired factories was much higher than that of muscle powered cottage industry. This led to a couple of centuries of unprecedented growth, fueled first by coal and then by oil and natural gas. And if that was the whole story, our industrial civilization would be doing just fine.

Unfortunately, there are some other things about fossil fuels that we need to consider:

  • They are not renewable on any sort of timescale that is useful to the human race.
  • We have already used up most of the easy to get at, high quality sources, the "low hanging fruit", so to speak. In the oil business this is known as "conventional oil", as if that sort of oil is the rule, rather than the exception.
  • There are lots of hydrocarbons left to dig/pump out of the ground, seemingly enough to last us a very long time. But they are either harder to access (tight oil and gas, deep offshore oil) or lower quality (heavy oil, tar sands, lignite coal).
  • We have recently developed technology that allows us to access and use more of these fuels. But this technology is expensive, both in terms of capital investment and the amount of energy needed to build, operate and maintain it.
  • Convenient as they are, burning fossil fuels releases carbon dioxide, which causes climate change with all its negative consequences.

For the purposes of the economy "surplus energy" is what's actually important. The "surplus energy" of an energy source is what's left over when we subtract the amount of energy required to access the source. This is quantified as EROEI, "energy returned on energy invested".

In the "good old days" of oil, it only took one barrel's worth of energy to get 100 barrels of oil out of the ground, leaving a surplus energy of 99 barrels. This corresponds to an EROEI of 99, and it means that in energy terms, that oil was cheap. Today, even conventional oil has a much lower EROEI, in the range of 10 to 30, and "fracked" oil or tar sands oil has a EROEI in the range of 3 to 5. As far as fossil fuels go, this ongoing reduction in EROEI is a pretty definite trend.

If we look at the average EROEI of all the energy sources used by an economy, it can tell us a good deal the current state of the economy as a consequence of the availability of surplus energy. When the average EROEI drops toward 15, economic growth slows. As it drops further, it becomes difficult to raise capital for new construction or maintenance of existing infrastructure. Below 10 it is unlikely that a modern industrial economy can be maintained at all, and we would be forced to change to something less energy intensive.

To put this in perspective, the average EROEI of the world today is around 11 and it is headed lower. It looks to me like all those low EROEI hydrocarbons in the ground aren't going to do us much good.
Note: it appears that the pdf file with world economic data is no longer at that link.
Here is a link to the file on my Google drive.
Here is the blog post by Tim Morgan where the file was referenced.

Switching over to renewables has been suggested as a solution to the depletion of fossil fuels and to climate change, but there are several problems with this:

  • Renewables themselves have a low EROEI.
  • When you add in storage equipment to level out the energy supply from intermittent renewables (wind and solar) you roughly cut the EROEI in half.
  • Renewables generate energy in the form of electricity. But electricity only accounts for something less than 20% of our energy use. The rest is currently powered directly by fossil fuels. Some of this energy use promises to be very difficult to convert to electricity.
  • Renewables might seem to solve the climate change problem, but the change over to renewables itself would require burning a whole lot of extra fossil fuels, with the increased release of CO2 which that would entail.
  • And of course, when an economy has a low average EROEI, raising capital for new projects is hard to do.

All in all it seems unlikely that we'll manage to install anywhere near enough renewable energy sources to allow us to continue with "business as usual". Even our current relatively small scale efforts are contributing to "energy sprawl" (fields of wind turbine and solar panels popping up everywhere) and diverting capital from other important efforts.

EROEI is a good sort of measure, in that it lets us avoid talking in terms of money, and provides a good indicator for the "health" of the economy. Energy prices in dollars (or whatever) can be quite misleading, as they are affected by many other things than the availability of surplus energy.

During the last half of the 20th century almost every recession was preceded by a spike in the price of oil, which makes sense—cheap energy makes the economy grow and expensive energy slows it down.

In the 1990s, though, the EROEI of oil had declined enough to stop real economic growth. Governments responded by adjusting the way GDP is calculated, to make the economic situation look better than it really was. Those same governments intensified their use of debt to stimulate the economy.

In the financial sector of the economy, investors in search of high yielding investments substituted bubbles for real growth, first with the dotcom bubble and then with the housing and derivatives bubbles that led to the financial crash of 2008. Since then despite the creation of huge amounts of government and private debt, there has been no real return to vigorous economic growth.

It's interesting to note what was going on with the price of oil while this was happening. In the late 1990s, the price of oil was around $12 per barrel. From there it went up more or less steadily to around $140 in August of 2008. With the financial crash, the price of oil fell off to about $30 per barrel and then with the so called recovery, came back up to around $100 per barrel. Then in late 2013 the price of oil started to fall, went below $40 per barrel and has not gone above $60 per barrel since then. Currently (May 2017) the price is just below $50 per barrel.

Several things seem to be happening:

  • Demand destruction: the combination of low EROEI and high prices 2009 to 2013 slowed the economy down and reduced the demand for oil (and other bulk materials like steel). With average EROEI getting continually worse, the economy is not recovering, even with the current low oil prices.
  • Price wars: both the US and OPEC are pumping as much oil out of the ground as possible, keeping oil prices low.
  • The low oil prices are having a destructive effect on fossil fuel companies, lowering their profits and reducing the development of fossil fuel resources.
  • As Nafeez Ahmed explains, there is a lot of misleading information about amount of conventional oil that is left:





    According to Professor Michael Jefferson of the ESCP Europe Business School, a former chief economist at oil major Royal Dutch/Shell Group. “… the five major Middle East oil exporters altered the basis of their definition of ‘proved’ conventional oil reserves from a 90 percent probability down to a 50 percent probability from 1984. The result has been an apparent (but not real) increase in their ‘proved’ conventional oil reserves of some 435 billion barrels.”
    "Global reserves have been further inflated by adding reserve figures from Venezuelan heavy oil and Canadian tar sands— despite the fact that they are "more difficult and costly to extract" and generally of "poorer quality" than conventional oil. This has brought up global reserve estimates by a further 440 billion barrels."
    “…the standard claim that the world has proved conventional oil reserves of nearly 1.7 trillion barrels is overstated by about 875 billion barrels.”

  • This and a lack of understanding of the economic results of low EROEI, have led some to believe (especially in the US) that "drill baby drill" is the right strategy.
  • Resources needed elsewhere are being used on low quality fossil fuel projects.

In my opinion, it would be better not to waste capital on accessing lower EROEI fossil fuels, to accept the inevitable energy decline and try to make the remaining fossil fuels last longer, especially for uses that don't involve burning them.

Now you may have been wondering what all this has to do with catastrophic/existential threats, but as we shall see shortly, the anthropogenic threats listed at start of this post can be viewed as disruptions to the Earth Systems and Human Systems shown in Figure 2. And interactions between our economy and its energy supplies are at the heart of those disruptions.

They can be classified as primary, secondary and tertiary effects, based on their position in a cascading stream of cause and effect. It has taken us a while to get here but now, at last, we will take a look at those threats and how they fit into the biophysical economy. The individual threats appear in bold in the discussion below.

Primary Threats

To my way of thinking, the primary threat is resource depletion.

The diversion of resources for our use disrupts the ecologies which rely on those resources. Examples would be our over use of water, arable land, forests and fisheries. Note that we ourselves depend on those ecologies, so we suffer as well.

The use of those resources has led to a good deal of success for the human race and this, in the form of overpopulation and over consumption is a problem in itself.

Then there are all the immediate consequences of the depletion of resources on which we rely. This certainly applies to non-renewable resources, in particular fossil fuels, on which we rely to keep our economy running. As the resources become depleted we are forced to move to lower EROEI energy sources, and the economy suffers as a result.

But even renewable resources are also being depleted as we use them at a rate faster than they are being renewed.

And lastly, there are the effects from the degraded byproducts of our industrial processes, especially the release of carbon dioxide into the atmosphere from the burning of fossil fuels, agriculture and forestry.

Secondary Threats

The secondary threats are consequences of our profligate use of resources and their resulting depletion.

Earth Systems are disrupted by the downstream consequences of resource use. We use the environment as a sink for the byproducts of our industrial processes. Pollution, in other words. And when there is a sufficiently large amount of pollution, the Earth Systems can no longer cope and start to be damaged. This contributes to ecological disasters. While there are many different types of pollution, carbon dioxide and the resulting climate change is the one that is currently of greatest concern.

These are just some of the effects of climate change:

  • more extremely hot days, fewer extremely cold days
  • currently wet areas getting more and heavier rain (flooding)
  • currently dry areas getting less rain (drought)
  • intensification of tropical storms
  • less winter snow pack
  • retreating mountain glaciers
  • melting polar ice caps
  • warming oceans
  • sea level rise
  • ocean acidification

These changes are already having disruptive effects on our global civilization, which will only get worse as they intensify:

  • agriculture grows less productive with the disappearance of the reliable weather it relies on, in some areas it becomes impractical to continue farming
  • health effects of heat waves and the spread of tropical diseases into formerly temperate areas
  • damage to homes, businesses and infrastructure due to increasingly heavy weather and rising sea level

There is much that could be done to reduce CO2 emissions and slow and eventually stop climate change, but most all of this involves reductions in the burning of fossil fuels, resulting in even less surplus energy to drive an already stressed economy.

Inside the economy, the decreasing EROEI of the fossil fuels we are using causes economic contraction, which has a whole bunch of downstream consequences.

  • reduced profits for businesses, leading to closings and bankruptcies
  • unemployment, and lower wages and more precarious situations for those who still are employed
  • a reduced tax base makes it harder for governments to maintain the social safety net, fund their obligations, and keep their election promises in general

Our current financial system is optimized to facilitate economic growth and it does not work at all well when the economy starts to shrink.

Businesses turning to automation to counteract the effects of economic contraction cause even more unemployment (economic singularity).

The depletion of fossil fuels, fossil water and plant nutrients like phosphorous, along with climate change, are leading us towards an agricultural crisis. This is intensified by an ever growing population. The first sign of this happening is the increasing cost of food. which hits the poor first and hardest, leading to some of the tertiary threats.

Tertiary Threats

Climate change, economic contraction and agricultural crises lead to political and social disruptions: protests, revolution, terrorism (including use of biotechnology), food riots, famine, migrations, war and so forth. People squeezed together into slums breed human sourced pandemics. (There, I've managed to tie the whole list of anthropogenic threats together.)

Populist politicians with overly simplistic solutions gain power by making promises they have no idea how to keep and which largely couldn't be kept in any case. Right wing extremists in the west and Islamic extremists in the Middle East both react to economic stress and take violent actions which allow them to feed off each other. The mass media perpetuate misconceptions about what is going on and what it would take to fix it. And so on.

And if, as all this disruption progresses, should there be a massive solar flare or an asteroid strike, we'll be hard pressed to do anything but take it on the chin.


So, to get back to where we started, is there any action we can take to prevent this perfect storm of threats? Well, if you mean any action that will allow us to keep business as usual rolling along with "good" growth numbers, I think the answer is pretty clearly no. Our industrial civilization is going to collapse, to some greater or lesser extent. We can't prevent this, but we could take action to mitigate its effects, turning it into a slow and relatively gentle crash. I've written a series of posts called "A Political Fantasy" that goes into detail on that. As you might guess from that title, I think there's a big difference between what "could" be done and what is actually likely to be done.

Still, I don't think the situation is beyond hope. What we can't avoid, we can adapt to.

We need to drastically reduce the human population, and it looks like events will take care of this for us. We need to drastically reduce the amount of energy we are using, and again, it looks like events are going to do the job for us. Those with problems taken care of all we need to do is find ways to keep some fraction of the human population alive through all these events. And again, we won't have to make any horrible decisions about who to get rid of. Even with all of us trying as hard as we can, only a few of us will succeed.

It would we helpful to have a rough idea of what's ahead and the sort of things that will help to see us through. And, perhaps even more importantly, a clear idea of what won't help so we can avoid wasting time and effort where it would do no good. My next series of post, Collapse Step by Step will deal with exactly those issues.

To leave you something to chew on, I will say that forward looking people should be considering a move to a better location: well above sea level, out of the path of tropical storms, where it rains regularly, it isn't too hot and the population density is already low. If such a location was beyond walking distance from large urban centres, it would be ideal. And if you can make such a move before the majority of the population catches on, have time to get set up and reduce your reliance on the monetary economy, and become part of the local community, so much the better.

Credit is are due to the authors of three books which influenced me considerably in the writing of this post:

3 Responses to Evaluating Existential Threats, Part 4: Conclusions

  • Anti Troll says:

    This is a summary of information from other sources. It appears reasonable enough, but I cannot see any unique viewpoint, just a rehash of stuff covered already. I did not have the motivation to read the first 3 parts in detail. Having browsed this final part today I must point out an important error, the same error I pointed out in a different post by a different author previously who also confused EROEI with net energy. This seemingly small point is extremely vital and betrays a crucial lack of understanding by these authors.

    Quote: 'In the "good old days" of oil, it only took one barrel's worth of energy to get 100 barrels of oil out of the ground, leaving a surplus energy of 99 barrels. This corresponds to an EROEI of 99…'

    Wrong. If 1 barrel is invested to get 100 barrels in return, the EROEI is 100 (better expressed as 100:1 because that makes it clear that EROEI is a ratio, whereas net energy is an absolute quantity). The "surplus" energy of 99 barrels is the NET energy available (100 minus 1). We burn 1 barrel and have a net amount of 99 barrels to play around with, when the EROEI is 100:1

    People need to understand that it is the NET energy which allows us to do things.

    On the up slope of the Hubbert curve for conventional oil, EROEI is so high that you can more or less regard it as equivalent to net energy: 100 approximates 99, no problem. On the down slope as time passes by however, EROEI declines alarmingly and when EROEI is 3:1, the surplus or net energy is only 2 units (3 minus 1).
    3:1 is the lousy EROEI of unconventional oils in general.

    If the net energy of 2 units is in fact 99 barrels, then one unit is 99/2 = 49.5 barrels

    This means that, with this lousy EROEI of 3:1, if we now want to pursue BAU with 99 net barrels of oil to emulate the "good old days" of happy motoring, we will have to burn one unit of oil or 49.5 barrels, to get 148.5 gross barrels, but this represents only 99 net barrels returned, compared with the past when it took only 1 barrel to get a net 99 barrels.

    This represents an energy efficiency reduction of almost 50 times. In energy terms, for unconventional oils, it is almost 50 times more difficult to obtain the same amount of net oil (99 barrels). This is the basis of the "Red Queen" effect from Alice through the Looking Glass, where you have to run ever faster just to stay in the same place. Imagine walking on a treadmill at 1 mile an hour to stay in the same place. No problem, easy peasy. Then imagine having to run on a treadmill at 50 miles an hour to stay in the same place, which is obviously impossible. You will be propelled backwards by the treadmill and smash through the rear wall and break all your bones. This is the bone breaking future we face when conventional oil EROEI collapses a few years from now.

    Anybody can appear to be intelligent by cutting and pasting information from other sources. Articles which explain concepts and promote understanding, and not simply rehash stuff from elsewhere, are much more valuable.

    • Irv Mills says:

      Thanks, Aunty Troll, for clarifying for me the difference between EROEI and surplus energy. An important point and one which I should (and soon will) correct in that post.

      My blog is mainly addressed to friends and fmaily who are not collapse aware. As such, rehashing (summarizing) old material in a clear and concise way is exactly what it aims to do. Probably not what those who frequent the Doomstead Diner are looking for, but I didn't seek this out, I was invited by RE to cross post here.

      As far as a unique viewpoint, if you had read the first post in the series, that would have been explained. But here is an excerpt:

      "What is my point of view? Well, I have a great deal of faith in the scientific consensus—we really don't have any better way than science of finding out about the world around us, and in the last few hundred years science has built up a pretty useful picture of that world.

      Some will no doubt ask, "How can you question BAU and expect it to collapse and yet still be in favour of the scientific consensus?"

      It is a common error to conflate the scientific consensus with the "official stories" that are the basic myths of Business As Usual. You can hardly blame anyone for jumping to the conclusion that BAU and science are on the same side, since every effort is made to use science to legitimize the ideas of BAU. Those myths are pushed by politicians, economists and business. They are dressed up in the kind of pseudoscientific costumes that make them hard to distinguish from reality. The "Biggest Lie" that I talked about recently, the idea that our population and consumption can go on growing forever on a finite planet, is at the heart of this false worldview.

      There are lots of people who don't completely buy into BAU. And there are multi-billion dollar per year businesses (organic farming, health food, and alternative medicine to name just a few) who take advantage of that, spending a great deal on propaganda and doing a good job of positioning themselves as being in opposition to Business as Usual. There is money to be made in that business, but the pseudoscience they are selling is just as bad as the myths from regular BAU. The people pushing both of these ideologies are very adept at finding the parts of science that happen to agree with their positions and flogging them for all they are worth to further their cause.

      The idea of these two conflicting ideologies, both of which are wrong, is central to what I am talking about on this blog and you'll find it coming up again and again. Last year I wrote a series of posts on the subject:

      Business as Usual, Crunchiness and Woo, Part 1

      Business as Usual, Crunchiness and Woo, Part 2: BAU and The Religion of Progress

      Business as Usual, Crunchiness and Woo, Part 2b: More on what's wrong with Business as Usual

      Business as Usual, Crunchiness and Woo, Part 3: Focusing on the Woo in Crunchiness

      Business as Usual, Crunchiness and Woo, Part 4: A Reality Based Approach

      If anybody can suggest a better term than "Crunchy", something less pejorative and more mellifluous, I'd sure be happy to use it. Setting aside all the pseudoscience for a moment, Crunchiness, in its opposition to BAU, is on the right track."


      And perhaps I should clarify that a scientific consensus in the sense that I mean it is a "consensus of the evidence", not a poll taken to see what scientists think.


  • Anti Troll says:

    Verbosity does not compensate for mediocrity. Sorry if I sound harsh but I've come to expect more from this website. Irv, I'm sure you are a very good person and I freely admit I am an asshole, but I would prefer more posts from proper scientists and proper experts.

Leave a Reply

Your email address will not be published. Required fields are marked *

Support the Diner
Search the Diner
Surveys & Podcasts


Renewable Energy


" As a daily reader of all of the doomsday blogs, e.g. the Diner, Nature Bats Last, Zerohedge, Scribbler, etc… I must say that I most look forward to your “off the microphone” rants. Your analysis, insights, and conclusions are always logical, well supported, and clearly articulated – a trifecta not frequently achieved."- Joe D
Global Diners

View Full Diner Stats

Global Population Stats

Enter a Country Name for full Population & Demographic Statistics

Lake Mead Watch



Inside the Diner

https://www.theatlantic.com/politics/archive/2017/06/trump-putin-russia/531420/The Kremlin's Investment in Trump Is Paying OffTh...


Quote from: Palloy2 on June 23, 2017, 03:22:54 PMThe first 4-litre tankful lasted 24 hours, so ~$0.60 / hour.To cut down on your kero heating bill, I suggest an electric blanket/heating pad[img]https://images-na.ssl...

I merged 2 other Qatar threads into this one to keep it all together.RE


Diner Twitter feed
Knarf’s Knewz

France’s star environment minister, Nicolas Hulot, [...]

Scientists at the University of Glasgow have succe [...]

Saudi Arabia and its allies presented Qatar with a [...]

Less than a month after his election and aching to [...]

Diner Newz Feeds
  • Surly
  • Agelbert
  • Knarf
  • Golden Oxen
  • Frostbite Falls

This space will be empty for the next couple of da [...]

Doomstead Diner Daily[html] [...]

Quote from: K-Dog on June 20, 2017, 04:04:05 PMNic [...]

[img width=160]http://www.emofaces.com/png/200/emo [...]

Nice commercial but;Call me crazy I don't thi [...]

France’s star environment minister, Nicolas Hulot, [...]

Scientists at the University of Glasgow have succe [...]

Saudi Arabia and its allies presented Qatar with a [...]

Less than a month after his election and aching to [...]

Liens Filed Against the Federal Reserve: The Key t [...]

All this sabre rattling & the best gold can do [...]

The whole nuclear war thing must be a deliberate s [...]

Quote from: azozeo on April 25, 2017, 01:59:58 PMT [...]

There may not be a banking system after next week. [...]

 Science & EnvironmentHow cats conquered the a [...]

There is an very old aphorism that says " It [...]

Alternate Perspectives
  • Two Ice Floes
  • Jumping Jack Flash
  • From Filmers to Farmers

SkyNet is Sentient and Will Destroy Your Investments and Pension By Cognitive Dissonance     Do you [...]

Poo Be Gone…Please! By Cognitive Dissonance (And now for a little humor.) For countless millions of [...]

I don't normally publish my rants. By  definition they are an excess of emotion regardless of h [...]

Imperial Conditioning Fear…the Controlling Meme By Cognitive Dissonance   Admittedly we are a bit is [...]

Seeing…and Being Seen By Cognitive Dissonance   While I suspect western culture has always been affl [...]

Event Update For 2017-06-22http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.html Th [...]

Event Update For 2017-06-21http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.html Th [...]

Event Update For 2017-06-20http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.html Th [...]

Event Update For 2017-06-19http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.html Th [...]

Event Update For 2017-06-18http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.html Th [...]

Now it's data that makes the world go round? It's comfortably accepted by many that what w [...]

I left off last week's post – "Money Doesn't Grow on Trees, Industrial-Scale Renewabl [...]

When you wish upon a star the Blue Fairy sends Tinker Bell, who plants a magic seed, which grows int [...]

Wendell Berry: "What I stand for is what I stand on"; Fanfare Ciocărlia: "What we pla [...]

The sounds of the Romanian countryside, unleashed by Fanfare Ciocărlia for twenty years and counting [...]

Daily Doom Photo


  • Peak Surfer
  • SUN
  • Transition Voice

Ground Up" This is where biochar is today in agriculture. Its a better mousetrap in the midst of a huge [...]

Paleofuturism"We haven’t hit the temperature levels we can expect from current CO2 levels, and by the time w [...]

The Way"Patterns of regenerative thinking augur regenerative patterns of living and the reverse is als [...]

Rollerblading the Halls of Power"This is what solutions look like. Some are very large. Some are very small. They are all impor [...]

Atlantic Crossing"There are some black swans in aviation’s future that could tip its economic balance. The three [...]

The folks at Windward have been doing great work at living sustainably for many years now.  Part of [...]

 The Daily SUN☼ Building a Better Tomorrow by Sustaining Universal Needs April 3, 2017 Powering Down [...]

Off the keyboard of Bob Montgomery Follow us on Twitter @doomstead666 Friend us on Facebook Publishe [...]

Visit SUN on Facebook Here [...]

In the echo-sphere of political punditry consensus forms rapidly, gels, and then, in short order…cal [...]

Discussions with figures from Noam Chomsky and Peter Senge to Thich Nhat Hanh and the Dalai Lama off [...]

Lefty Greenies have some laudable ideas. Why is it then that they don't bother to really build [...]

Democracy and politics would be messy business even if all participants were saints. But America doe [...]

A new book argues that, in order to survive climate change and peak oil, the global money economy ne [...]

Top Commentariats
  • Our Finite World
  • Economic Undertow

It would be like Northern Spain, where bodyguards multiplied wonderfully, and they hung on to those [...]

when I wrote this guys I had in the back of my mind the recent killings of three attorney murders in [...]

That's understood..... Terrorists are really just a fringe show in the great theatre of Collaps [...]

what about biggest scum of this planet bankers and politicians should be they hang first [...]

Welcome to new day, added 's' to 'http' so everyone should feel more secure ... [...]

Just to be clear about all the different administrations mentioned; All the while not one thing that [...]

Clintons job was to keep the party going, BJs under the desk for all! Bushs job was to tell jokes an [...]

Hey Steve, why don't you look into becoming REs neighbor. After the great power down, you can l [...]

Think Vermont. All you need is a wood stove and an internet connection. I'll bet you have a lot [...]

RE Economics

Going Cashless

Off the keyboard of RE Follow us on Twitter @doomstead666...

Simplifying the Final Countdown

Off the keyboard of RE Follow us on Twitter @doomstead666...

Bond Market Collapse and the Banning of Cash

Off the microphone of RE Follow us on Twitter @doomstead666...

Do Central Bankers Recognize there is NO GROWTH?

Discuss this article @ the ECONOMICS TABLE inside the...

Singularity of the Dollar

Off the Keyboard of RE Follow us on Twitter @doomstead666...

Kurrency Kollapse: To Print or Not To Print?

Off the microphone of RE Follow us on Twitter @doomstead666...


Off the microphone of RE Follow us on Twitter @doomstead666...

Of Heat Sinks & Debt Sinks: A Thermodynamic View of Money

Off the keyboard of RE Follow us on Twitter @doomstead666...

Merry Doomy Christmas

Off the keyboard of RE Follow us on Twitter @doomstead666...

Peak Customers: The Final Liquidation Sale

Off the keyboard of RE Follow us on Twitter @doomstead666...

Collapse Fiction
Useful Links
Technical Journals

Implementation of greenhouse gas (GHG) abatement strategies often ends up as the responsibility of m [...]

While there exists extensive assessment of urban heat, we observe myriad methods for describing ther [...]

Usnic acid contents in acetone extracts of 31 samples of lichen Parmelia flexilis collected from dif [...]

The SWATDRAIN model was developed by incorporating the subsurface flow model, DRAINMOD, into a water [...]

Follow on our http://www.doomsteaddiner.net/forum/