Collapse, you say? Part 3: Inputs and Outputs continued

gc2reddit-logoOff the keyboard of Irv Mills

Follow us on Twitter @doomstead666
Friend us on Facebook

Published on The Easiest Person to Fool on September 29, 2020

Renewable Energy

 

Discuss this article at the Kitchen Sink inside the Diner

 

 

Kincardine's breakwall awash in the waves

This is the second half of a post that I cut in two because it was just too long (6000+ words). If you haven't read the first half yet, it would be a good idea to do so—what follows will make more sense that way.

That first half finished with a discussion of the problems with fossil fuels as an energy source for our civilization. It's last paragraph is repeated below. Today, we'll go on from there, looking at other inputs that are problematical for our civilization.

Energy, renewable sources

But, you may say, if fossil fuels are no good what about renewable energy sources? There are large amounts of energy available from sources like hydro, biomass, wind, solar and so forth. And they don't involve adding more CO2 to the atmosphere—even biomass is only adding CO2 that was recently taken out of the atmosphere and will be taken out again as more biomass grows. A great many people today believe that renewables can replace fossil fuels and solve both our surplus energy and climate change problems. In fact, it has become very unpopular to challenge that idea, but I am afraid I must do just that.

The problems with switching over to renewable energy sources can be divided into three areas.

  • the political will to do so
  • the economic means to do so
  • the technical feasibility of doing so

Political Will

It is clear that we will have to switch to renewable energy sources if we wish to become sustainable. But it is also clear that, as we'll see in a moment in the section on technical feasibility, renewable energy sources will not be able to support the level of growth and consumption that many of us are accustomed to, and they certainly won't be able to extend that level of prosperity to the poorer parts of the world.

For the overwhelming majority of people, lifestyle is not negotiable. And our current lifestyle demands continued growth and ever increasing prosperity—consumption, convenience, comfort and entertainment. I haven't noticed anyone rioting for the sort of austerity measures that I believe a switch away from fossil fuels would require. So, any plan that can't provide continued material progress is unlikely to be seriously considered, much less implemented. Yes, of course, I realize that we could change our lifestyle, and indeed circumstances may well force us to do so. My point is that most of us don't want to change the way we live, and will resist any attempt to get us to do so.

Plans like the "Green New Deal", which promise to create jobs and stimulate economic growth while switching over from fossil fuels to renewables, are intended to be more palatable. But there is good reason to think they are not economically or technically possible. And, if they were seriously undertaken, they might well make things worse, requiring the consumption of even more fossil fuels in the huge construction project that this switch over would require. This would mean further increases in the amount of CO2 in the atmosphere and would make climate change even worse, bringing about collapse even more quickly. Certainly not what the Green New Deal promises, but what it is likely to deliver.

The Economic Means

The surplus energy problem that I spoke of last time, and the resulting continued economic contraction that is going on, make it seem unlikely that we will have the wherewithal for such a major construction project in the years to come—we are looking at spending trillions of dollars building solar panels, windmills, storage facilities and an enhanced grid. Most of which will only make the surplus energy problem worse.

Technical Feasibility

For me, this is the real deciding factor. Let's consider the technical problems with renewable energy sources in general and then have a look at the issues with specific types of renewables. This will make it clear why I think a switchover to renewables is simply not doable, without drastic changes to our lifestyle.

The current fossil fuel infrastructure—coal mines, oil and gas wells, shipping, rail cars, pipelines, refineries, storage, distribution and retail facilities, and the equipment we have set up to use those fuels—is actually quite compact, owing to the concentrated nature of those fuels. They contain a lot of energy in a small, light package, and this has been the key to their success.

Renewables are more diffuse and require extensive infrastructure to gather and concentrate them to the point where they are useful. Already we are seeing what I call "energy sprawl" spreading across the countryside in the form of wind turbines and solar panels. But the amount of energy we are getting from this sprawl is tiny compared to our total energy use.

The renewable energy that is being proposed as a solution (wind and solar, mainly) comes largely in the form of electricity. Unfortunately, only about 20% of the energy we use today is used in the form of electricity. The rest is used directly in the form of refined fossil fuels to power transportation and to supply heat for industrial processes, space heating and so forth. The two biggest obstacles are electrifying heavy transportation (trucks and ships), and using renewable power to provide heat for manufacturing things like steel and concrete.

Switching over to renewables not only requires us to build huge amounts (5 times more than we currently have) of electrical generation, all of it powered by renewable energy sources, but also that we switch our transportation fleets and industrial infrastructure over to use electricity instead of fossil fuels as a power source.

This a big job that the "powers that be" don't really seem very interested in undertaking, and there are large chunks of it that we don't even know how to do as yet. I'll borrow a term from the nuclear industry here: "paper reactors". Solutions that so far only exist on paper have a tendency to take longer than predicted to implement, and cost a lot more money than expected. Time and money are two things that we don't have in great supply these days.

The power grid, which in most areas is just barely coping with peak loads, will also have to be beefed up by a factor of five to cope with the switch over to an all electric economy. But using the electricity from renewables presents some significant problems for the grid. Our civilization treats the power grid as an infinite source of energy which is available 24/7. In order to provide this, the grid needs energy sources that are "dispatchable". That is, energy sources can be turned on and off at will and ramped up and down as needed to cope with varying loads. This is usually done using a combination of coal, oil, natural gas and hydroelectricity, all of which are to some extent dispatchable.

But wind and solar are anything but dispatchable. The wind blows when it will, and there are often long periods without any wind at all over large geographic areas. The sun shines only during the day, except when there is cloud cover, and solar panels are often be covered with snow in the winter. None of these variations corresponds in any way to the normal variations in load that the grid experiences. In fact, to make even small amounts of intermittent renewable energy fit into the grid, highly dispatchable energy sources like combustion turbines (jet engines connected to generators, burning jet fuel) must be left spinning on standby, ready to compensate instantly when renewables falter.

This hardly makes the grid any "greener" at all. One solution would be to have a way of storing electrical power which could then be used to fill in when renewables let us down. Pumped storage of water is one alternative that is a mature technology. Water is pumped uphill to a reservoir when surplus power is available and then runs down hill through turbines to generate power when extra is needed. The problem is scalability—there are limited locations where reservoirs exists at the top a large change in elevation and near a supply of water. Batteries or compressed air on the scale that is needed here so far only exist on paper, and further development seems likely to run up against some fundamental physical limits.

Even if all these issues can be solved, we'd end up with a grid that is less resilient and more complex—more susceptible to failure.

It should also be noted that equipment like wind turbines, solar cells and batteries have a limited life. This poses two problems—when they wear out, they have to be replaced, and the old equipment has to been gotten rid of. Hopefully recycled, but more likely just disposed of.

A late addtion: Bev, one of my regular readers, pointed out in the comments below something that I had failed to make clear: while the energy from renewables is renewable, the equipment itself is built with largley non-renewable materials, and using up the quantity of materials we are talking about will no doubt lead to new resource depletion problems. It also takes fossil fuels to build, deliver, install, operate, maintain, repair and eventually decommision that equipment. Someday we may be able to power some of those steps with renewables, but initially and for the foreseable future, it's hard to see if there is really any net reduction in the use of fossil fuels when you look at the whole process.

And finally, even if all the technical problems could be solved, wind and solar do not have very good EROEIs, and would make our surplus energy problem even worse.

To bring this all home, let's take a look at the specific forms of renewable energy that we might turn to if we want to get off fossil fuels.

Power from biomass, basically firewood, is a very mature technology, and it has many advantages. While it is produced only during the growing season, it can be harvested and stored for use during winter. It is quite dispatchable and its EROEI is reasonably high, depending on how far it has to be hauled from the forest to where it is going to be used. Unfortunately, it is not highly scalable, since it competes with agriculture for land at a time when we are struggling to grow enough food for the world's growing population.

Hydroelectric power is another mature technology, with good dispatchability and a high EROEI. It is somewhat seasonal and it is not very scalable since most good locations are already in use. Developing the few remaining feasible locations would mean flooding large areas of land with environmental consequences that we should likely see as unacceptable.

Wind power is quite scalable, but intermittent and not dispatchable at all. It's EROEI is in the high teens, which is borderline for our needs, and probably lower if you take storage facilities into account.

Solar power is quite scalable, but intermittent and not dispatchable at all. It's EROEI is quite low, in the mid single digits, less if storage facilities are included in your calculations.

Nuclear fission power is not really a renewable since it relies on finite supplies of fissionable fuel. If a nuclear powered economy is to keep growing, it will run out of fuel in a surprisingly short time, even if spent fuel from the current generation of reactors can be processed for use in newer reactors. Nuclear has limited dispatchability, being best suited to supply base load. It has pretty good scalability, except that it takes a long time to build new nuclear plants, and we would need a lot of them to replace fossil fuels. We must also overcome many political and safety issues before starting to build more nukes. Lastly, the EROEI of nuclear is around 9, largely due to the complexity and safety features involved, so it only makes the surplus energy problem worse.

Nuclear fusion power isn't renewable either, though it's fuel is much more common than fissionables. But it is a "paper technology"— usable fusion reactors have been "just thirty years in the future" since the middle of the twentieth century, and will likely always be so. If we did somehow find the money to finish developing this technology, it would be very expensive to build, and its EROEI would likely be very low due to its high degree of complexity.

All in all, this is not an encouraging picture. You can see why I am so doubtful about switching from fossil fuels to renewables. One the one hand we desperately need to get off fossil fuels to get climate change under control. On the other hand we desperately need fossil fuels (or the elusive "something equivalent") to supply surplus energy to maintain our growing economy and the lifestyles it enables.

I have no confidence that we will even try to address this seemingly unresolvable conflict, and that is one more reason that I am expecting collapse.

Further, as the weighted average of the EROEIs of all a civilization's energy sources declines it is not just economic growth that suffers, but also the ability to maintain infrastructure. This includes the ability to build high tech equipment, including things like solar panels and wind turbines. At some point, as our industrial civilization continues to collapse, we will find ourselves restricted to low tech renewables and unable to maintain a large scale power grid. We'll be forced to drastically reduce our consumption of energy, and to adapt our use of energy to the intermittency of the sources, rather than the other way around.

So far I have only addressed the problems with energy inputs to our civilization, but there are other inputs that also present significant challenges.

The Ecosystem, and ecosystem services

Figure 2, from my last post

The circle enclosing industrial civilization in the diagram above is misleading in that it would tend to suggest there is a boundary separating civilization from the environment, when it is really just another part of the environment. I have use a dashed line, hoping to indicated that many things flow freely between our civilization and its environment. There is a whole category of such things—inputs to our civilization—that we are absolutely dependent upon. Often referred to as "ecosystem services", these inputs are things we tend not to be aware of, in much the same way as fish are not aware of water.

They include breathable air, potable water, a reliable climate and moderate weather, arable soil, grasslands, forests and the animals living on/in them, waters and the fisheries they provide, and so on. These things are available to us free of charge and we would simply could not do without them.

It is important to understand that the ecosystem can only supply its services at a certain maximum rate—its carrying capacity. If we use those services at a higher rate, the ecosystem suffers and that carrying capacity is reduced. Many of the waste outputs of our civilization can also damage the ecosphere, again reducing its carrying capacity. And we continue to convert nature into farms, roads and cities, yet again reducing its carrying capacity.

This has created the current situation where we are temporarily in "overshoot", using more than 100% of the planet's carrying capacity. We are able to do this because there is a certain amount of stored capacity within the system. Drawing on that capacity has lulled us into a false sense of security. But rest assured, the situation is temporary and shortly the damage to the ecosphere will become obvious, and its declining ability to support us will have disastrous consequences.

To put some numbers on this, in the early 1970s when The Limits to Growth was published, we were using about 85% of the planet's carrying capacity. There was, at that point, at least hypothetically, an opportunity to put the brakes on economic growth and start living sustainably. Of course, we did not do so and now we are using around 165% of that carrying capacity. If we bring the poorer part of the world up to a standard of living similar to that of the developed nations, it would take about 500% of that carrying capacity to support the human race. Many suggest we should do exactly that, as a matter of social and economic justice.

It is hard to disagree with that, in and of itself. But long before this happens, of course, the ecosphere will have collapsed and suffered a drastic decrease in its carrying capacity.

Three factors are involved in our impact on the ecosphere: population, affluence (consumption) and technology. This can be represented by the equation I=PAT.

Population and affluence are politically sensitive subjects, so many people have focused on using technology to reduce our footprint. This is known as "decoupling", since the aim is to decouple rising population and consumption from their effects on the ecosphere, to allow growth to continue without having harmful effects. It turns out decoupling has not yet even begun and is very unlikely to ever be achieved. It is largely a myth. Here are a couple of links (1, 2), to articles that go into this in detail.

In addition to promoting myths about decoupling, those who do not wish growth to stop quibble about exactly what the planet's carrying capacity actually is and just how far into overshoot we currently are. This accomplishes nothing, since whatever that carrying capacity actually is, continued exponential growth will quickly take us past it into overshoot.

So it would seem we should do something about population and/or affluence. Population is such a hot button issue that one can hardly discuss it in polite company. Understandably so, since reducing population must involve either reducing fertility or increasing the death rate. Indeed people have been accused of being "eco-fascists" because they see the need to reduce our population, and look to the most populous areas as the first place to take action. I think "eco-fascist" is a reasonable term, since the most populous areas are also the poorest places on the planet and our impact on the ecosystem is the product of both population and affluence. In the developed world our consumption is so high that even though we have far fewer people, our impact is much larger than that of the poorer parts of the world.

Figure 3

As this chart (Figure 3) shows, the richest 10% of the planet's population does close to 60% of the consumption. The richest 20% does over 75% of it (17.6+59=76.6). So, reducing consumption in the more affluent parts of the world would be a good start to coping with our problems because it would immediately take us out of overshoot and give us some breathing room to address the damage we've been doing to the ecosystem.

Figure 4

As this revised consumption chart (Figure 4) shows, if we could reduce our consumption by 50%, it would reduce our ecological impact down to 82.5% of the planet's carrying capacity, while actually increasing the consumption level of the lowest seven deciles of the population, and only reducing the consumption levels of the top three deciles. This would seem to satisfy our yearning for social and environmental justice and significantly delay, if not prevent, collapse. But since the most affluent people, those in the tenth decile, are also in control of the situation, it seems unlikely that we'll make a serious attempt to implement that solution unless we are forced to do so by events beyond our control that bear a strong resemblance to collapse.

You may say that our population problem exists because our capacity to provide food has increased and our capacity to reproduce has responded, not the other way around. I don't disagree, but I don't think it is very useful to point that out. Deliberately cutting back on food production and letting people starve in order to reduce our impact on the ecosystem is morally repugnant. It is also not particularly effective since the poor would be effected first and they are not the major contributors to our impact on the ecosystem.

It has also been observed that as countries get richer, their birthrate goes down. Extrapolating current trends (including continued development in the developing nations), the UN calculates that our population will top out around 10 billion late this century and then begin to decline. They would tell you that all we have do is hang on until then and all will be well. But again, I disagree. Long before our population reaches 10 billion, especially if nothing is done to reduce our rate of consumption, the ecosystem will collapse and its carrying capacity will crash down to a level that can support only a tiny fraction of our present population. I think 10 to 20% would be an optimistic prediction.

Overuse of Fossil Water

This post is already quite a bit longer than I usually aim for, and I have only covered what I see as the most urgent input and output issues. There are many other areas that I haven't begun to cover, and which I will have to leave for another day. But there is one more input issue that I just can't leave out, and that is the depletion of fossil water.

Many of the important agricultural areas around the world rely on irrigation, and water for that irrigation is pumped out of fossil aquifers. That is, underground reservoirs that took hundreds of thousands of years to accumulate. The current rate of use is many times greater than the current rate of replenishment, and it is only a matter of time, and not much time, until they run dry.

The consequences for agriculture will seriously debilitate our civilization's ability feed us.

Summing it all up

We have seen again and again, from the start to the finish of this post, and the previous one, that resource depletion of various sorts, and depletion of the sinks into which we dispose of our wastes, seriously threaten our civilization. Any one of these issues is enough, all on its own, to compromise that civilization's ability to provide us with the necessities of life. In other words, to bring about collapse. And many of them interact in ways that just make the situation worse.

But inputs and outputs are not the whole story. The interior workings of our civilization are replete with issues that threaten its ongoing survival. Next time, we'll have a close look at some of those issues.



Links to the rest of this series of posts, Collapse, you say?

 

Knarf plays the Doomer Blues

https://image.freepik.com/free-icon/musical-notes-symbols_318-29778.jpg

Support the Diner
Search the Diner
Surveys & Podcasts

NEW SURVEY

Renewable Energy

VISIT AND FOLLOW US ON DINER SOUNDCLOUD

" As a daily reader of all of the doomsday blogs, e.g. the Diner, Nature Bats Last, Zerohedge, Scribbler, etc… I must say that I most look forward to your “off the microphone” rants. Your analysis, insights, and conclusions are always logical, well supported, and clearly articulated – a trifecta not frequently achieved."- Joe D
Archives
Global Diners

View Full Diner Stats

Global Population Stats

Enter a Country Name for full Population & Demographic Statistics

Lake Mead Watch

http://si.wsj.net/public/resources/images/NA-BX686_LakeMe_G_20130816175615.jpg

loading

Inside the Diner

Quote from: John of Wallan on December 03, 2020, 05:07:20 PMSo 100% of these phantom ballots were for Trumpsky?JOWNo, we don't know who they were for yet... they just got the video last night. But given that Biden won ...

So 100% of these phantom ballots were for Trumpsky?JOW

So there aren't 2800 deaths a day from Covid in the US is that what you are saying?So anyone who dies from Covid is either a statistical lie or they had it coming anyway because old and sick people are expendable?I suppose the third option is medical...

Now this one takes the cake... they have video evidence of supervisors telling poll workers and two republican monitors to clear out because they are done for the day, then four people stay behind, start pulling suitcases of ballots from under a table ...

Heck yeah....

Recent Facebook Posts

No recent Facebook posts to show

Diner Twitter feed

Diner Newz Feeds
  • Surly
  • Agelbert
  • Knarf
  • Golden Oxen
  • Frostbite Falls

Quote from: UnhingedBecauseLucid on March 18, 2019 [...]

CleanTechnicaSupport CleanTechnica’s work via dona [...]

QuoteThe FACT that the current incredibly STUPID e [...]

Quote from: K-Dog on February 24, 2020, 06:23:52 P [...]

I wonder how much these coins have been debased? [...]

Precious tip of the day.....Buy silver NOW  She [...]

Scientists have unlocked the power of gold atoms b [...]

Quote from: azozeo on August 14, 2019, 10:41:33 AM [...]

I am OUT of Jury Service!  I got summoned to be a [...]

Quote from: Eddie on May 16, 2020, 10:30:30 AMQuot [...]

Quote from: RE on May 16, 2020, 08:20:06 AMQuote f [...]

Quote from: RE on May 16, 2020, 08:20:06 AMQuote f [...]

Alternate Perspectives
  • Two Ice Floes
  • Jumping Jack Flash
  • From Filmers to Farmers

Getting Out of Dodge By Cognitive Dissonance     Recently I received an email from a reader who aske [...]

Penalizing Prudence By Cognitive Dissonance     “Economy, prudence, and a simple life are the sure m [...]

Harvest at Chez Cog By Cognitive Dissonance   It became obvious to Mrs. Cog and I by early February [...]

  Perhaps a Crumble Rather Than a Collapse Chapter One By Cognitive Dissonance     “...we can endure [...]

The Flim-Flam Men by Cognitive Dissonance   I suspect if average Joe or Jane were asked to identify [...]

Event Update For 2020-12-02http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.htmlThe [...]

Event Update For 2020-12-01http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.htmlThe [...]

2020 - Swimming Pool Deaths2020-11-30 - Brother and sister, 33 and 31, die in swimming pool in Barberton (South Africa):http:// [...]

In the meantime, industrialised chickens – and their viruses – have come home to roost in Victoria, [...]

Based on extensive scientific research, a fictional reminder that COVID-19 is but a mild pandemic – [...]

In other words, treat COVID-19 like a dry-run for the upcoming "big one" [...]

However don't expect strikes and yellow vests to fix underlying problems [...]

Daily Doom Photo

man-watching-tv

Sustainability
  • Peak Surfer
  • SUN
  • Transition Voice

"Storytelling elevates our group skill set, but sometimes myths evolve over time and become mor [...]

"Can a global population of 8 to 10 billion people be fed, sheltered, kept healthy, and still h [...]

"70 million USAnians voted for Krusty the maniacal clown instead of Mr. Rogers. Is it that we g [...]

"Pandemic lockdowns curtailed jet travel, closed shops and schools, and reduced global dimming [...]

"Biophysical inertia, technological lock in, and the socioeconomic addictions we hear parroted [...]

The folks at Windward have been doing great work at living sustainably for many years now.  Part of [...]

 The Daily SUN☼ Building a Better Tomorrow by Sustaining Universal Needs April 3, 2017 Powering Down [...]

Off the keyboard of Bob Montgomery Follow us on Twitter @doomstead666 Friend us on Facebook Publishe [...]

Visit SUN on Facebook Here [...]

Camus didn't predict Covid, but he studied enough about pandemics throughout history to depict [...]

Sarah Chayes spent decades studying networks of corruption in the Third World. Now she's findin [...]

What extinction crisis? Believe it or not, there are still climate science deniers out there. And th [...]

My new book, Abolish Oil Now, will talk about why the climate movement has failed and what we can do [...]

A new climate protest movement out of the UK has taken Europe by storm and made governments sit down [...]

Top Commentariats
  • Our Finite World
  • Economic Undertow

In reply to Dennis L.. Dennis, a great idea. Let's refer to photons as "she". The pro [...]

In reply to Robert Firth. Robert: Thank you very much! This makes it clear why my superficial search [...]

In reply to davidinamonthorayearoradecade. O my paws and whiskers, it seems Fast Eddy has risen from [...]

In reply to Artleads. Artleads, my research indicates the poem has never been published, and the onl [...]

In reply to Gail Tverberg. Gail, William Stanley Jevons saw this crisis coming in 1906, in his book [...]

In reply to Bill Sodomsky. While it's great to read new stuff from Steve in its own right, ther [...]

Hi Steve, I'm sure that I speak for many others when I say it sure would be good to hear from y [...]

In reply to steve from virginia. Kind of like the opposite of, "Oops, there it is"? [...]

The President of the USA has the disease coronavirus. This disease is known to cause acute breathing [...]

I was born in 1947. Shortly several billion young people, around the world, will realise that my gen [...]

RE Economics

Going Cashless

Off the keyboard of RE Follow us on Twitter @doomstead666...

Simplifying the Final Countdown

Off the keyboard of RE Follow us on Twitter @doomstead666...

Bond Market Collapse and the Banning of Cash

Off the microphone of RE Follow us on Twitter @doomstead666...

Do Central Bankers Recognize there is NO GROWTH?

Discuss this article @ the ECONOMICS TABLE inside the...

Singularity of the Dollar

Off the Keyboard of RE Follow us on Twitter @doomstead666...

Kurrency Kollapse: To Print or Not To Print?

Off the microphone of RE Follow us on Twitter @doomstead666...

SWISSIE CAPITULATION!

Off the microphone of RE Follow us on Twitter @doomstead666...

Of Heat Sinks & Debt Sinks: A Thermodynamic View of Money

Off the keyboard of RE Follow us on Twitter @doomstead666...

Merry Doomy Christmas

Off the keyboard of RE Follow us on Twitter @doomstead666...

Peak Customers: The Final Liquidation Sale

Off the keyboard of RE Follow us on Twitter @doomstead666...

Collapse Fiction
Useful Links
Technical Journals

Global warming poses great challenges for forest managers regarding adaptation strategies and specie [...]

Sri Lanka is experiencing various social and environmental challenges, including drought, storms, fl [...]

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and avai [...]

Recently, assessments of global climate model (GCM) ensembles have transitioned from using unweighte [...]

Follow on our http://www.doomsteaddiner.net/forum/