biomass energy

Collapse, you say? Part 2: Inputs and Outputs

gc2reddit-logoOff the keyboard of Irv Mills

Follow us on Twitter @doomstead666
Friend us on Facebook

Published on The Easiest Person to Fool on September 29, 2020

Discuss this article at the Kitchen Sink inside the Diner

 

 

Waves breaking along the Lake Huron shore—and this on a relatively quiet day.  

The title of this series of posts comes from the typical reaction you get when suggesting that our civiiization might be collapsing, "Collapse you say, surely not!" In my last post I said that I am convinced it is already happening or at least will happen at some point soon. Then I went on to explain what I mean by collapse—the process by which a civilization declines in its ability to provide the necessities of life to its members, the end result being that people are forced to fend for themselves or perish.

It seems to me that this is in fact happening today—that for all but a tiny minority at the "top", things are getting continually worse. The how and why of this process is the subject of this post and the ones that follow it.

The means of production and distribution that provide us with the necessities of life in modern industrial civilization require certain inputs and produce certain outputs. Today I want to the look at the problems posed in acquiring those inputs and disposing of those outputs.

I would guess that it's clear that by inputs I mean the energy and materials required to make the things we need. But what I mean by outputs may be less clear. I am not referring to the goods that are produced from the inputs, but the waste products produced in the process and the garbage that is left over when we are done using those goods.

But why should these inputs and outputs constitute problems?

Conventional thinking has our civilization in a box, separate from our planet and its ecosphere. The inputs (energy and materials) our civilization uses come from sources that are seen as essentially infinite and the outputs (waste heat and waste materials) are discharged into sinks that are also seen as being essentially infinite in size. Given all that, no reason is seen for progress—economic growth in this context—not continuing for the foreseeable future. This way of looking at things typifies some of the blind spots of modern thinking on economics and business.

Figure 1

Figure 1 illustrates what I am talking about. As long as there were relatively few people on our planet, and they weren't consuming excessively, it's easy to see how we might have looked at things this way. But now that we are well on our way to filling up the planet—or more likely well beyond that point—this is no longer valid. And sure, many people are aware that this is a very unrealistic picture, but the people who are running things, even those who verbally acknowledge the realities, continue to act as if there are no limits built into the system. In a future post we'll look at why this is so, but for now it suffices to say that it truly is the case.

Figure 2

Figure 2 is a different diagram, which provides a more realistic depiction of things as they exist today.

First of all, our civilization exists on a finite planet, entirely within that planet's ecosphere, with no real separation from it (note the dashed border). Our inputs are taken from that finite source and our wastes are discharged back into that same finite space, used as a sink for waste heat and all our material wastes. This has some truly nasty consequences.

Inputs and outputs come in two forms: energy and materials. Energy flows from more concentrated to less concentrated forms, and regardless of where it comes from, is eventually radiated away from the planet as waste heat. Because of this, at any one level, we only get to use energy once. Materials stay around and can be reused, but generally change from more organized forms to less organized, (and less useful) forms as time passes.

For the planet itself, on the relatively short timescales we are considering, the only significant inputs and outputs are in the form of energy—sunlight in and waste heat out. This means that the planet isn't a closed system and incoming energy can be used to arrange matter into more complex forms, converting the energy used to a less concentrated form in the process. That's the good news—the rest of the news is bad.

Outputs

Let's look at outputs first, since that will make it easier to understand some of the problems with inputs. As I said, the outputs I am talking about are the wastes from processes within our society, and the garbage left over when we are done with the products of those processes. We simply throw these things away, but the trouble is that there is no such place as "away". The sinks into which we dispose of wastes are part of the very same environment where we get our inputs from, so this is much like shitting in our own nest. And in a great many cases it is not necessary at all. Many of these end products could, with relatively little effort, be fed back into the processes, and not treated as "wastes" at all.

That we haven't "circularized" our use of materials is a really bad sign. Why we continue to do this is inherent to the internal workings of our civilization and I'll go into the details of that in a future post. For now it is sufficient to understand that as long as that civilization exists in its present form, it's outputs will continue to be a problem.

There are a great many different types of pollution, but for our purposes today I'll concentrate on two particular type of waste—carbon dioxide and methane.

Carbon dioxide (CO2) is produced in the burning of fossil fuels and biomass, and in the processes we use to make things like steel and concrete, essential building materials of our civilization. CO2 is a major contributor to the greenhouse effect and consequently climate change, and is also the cause of ocean acidification.

Methane (natural gas, CH4) has been touted as a replacement for coal and oil since it gives off less (but not zero) CO2 when burned. But it is an even more potent greenhouse gas than CO2. Between the wellhead and where it is used a great deal of methane leaks into the atmosphere—probably enough to overshadow any reduction in CO2 released by burning natural gas instead of other fossil fuels. Methane is also produced during the decay of organic matter and by the digestive systems of many animals. Warming due to climate change is releasing methane currently trapped in permafrost and in methane clathrate hydrates at the bottom of the Arctic Ocean, further intensifying the warming process.

Ocean acidification the lesser known evil twin of climate change, occurs when CO2 is dissolved in water. An estimated 30–40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers and lakes. Some of it reacts with the water to form carbonic acid. Some of the resulting carbonic acid molecules dissociate into a bicarbonate ion and a hydrogen ion, thus increasing ocean acidity (H+ ion concentration).

Increasing acidity is thought to have a range of potentially harmful consequences for marine organisms such as depressing metabolic rates and immune responses in some organisms and causing coral bleaching. A net decrease in the amount of carbonate ions available may make it more difficult for marine calcifying organisms, such as coral and some plankton, to form biogenic calcium carbonate, and such structures become vulnerable to dissolution. Ongoing acidification of the oceans may threaten food chains linked with the oceans.

(Thanks to Wikipedia for the last two paragraphs.)

These are food chains that we sit at the top of, with many people, especially in poorer nations, relying heavily on seafood for protein.

Climate change has been in the news a lot lately, with a wide range of people expressing concern about its negative effects on our future. If, despite this, you are still a doubter or denier, you're in the wrong place on the internet, and need not bother leaving any comments. In my experience, if you scratch a climate change denier, you will find beneath the surface a rich person who is worried about losing their privilege.

So, climate change is real and it is driven by increases in greenhouse gases (CO2 and CH4 among others) in the atmosphere which cause the planet to retain more of the sun's heat. It has also been called "global warming", since it causes the overall average temperature of the planet to going up. The high latitudes in particular are already experiencing temperature increases. Eventually this is going to cause enough melting of glaciers to make for a significant increase in sea level.

In the meantime, climate change is also causing more frequent and heavier storms, which combined with even small increases in sea level, are causing a lot of damage along the oceans' shores. Such storms are also causing more frequent and serious flooding of many rivers.

Climate change is also intensifying droughts in many other areas, and in some of those areas this is leading to wild fires.

How does all this tie into collapse?

Storm surges, high winds, river flooding and wild fires are doing a great deal of damage to human settlements, at a time when our economy is struggling and the added cost of rebuilding can scarcely be afforded. Especially since we tend to rebuild in the same areas, leaving rebuilt settlements just as exposed as they were before.

The effects of climate change on agriculture are even more serious. In the ten or so millennia since we started practicing agriculture the climate on this planet has been particularly friendly to that endeavour. Farmers have been able to count on reliable temperatures and rainfall. This is now starting to change and as the rate of that change picks up over the coming decades, it is going to be very challenging to adapt to. This at a time when we are struggling to keep up to the demands of a growing and ever more affluent population for food and when there is little left in the way of wilderness to expand our farms into.

Even if climate change was the only problem we faced, it is serious enough to place the continued survival of our species into question. We are facing, to quote Jem Bendell, "inevitable collapse, probable catastrophe and possible extinction."

The threat of climate change is serious enough that most people who worry about such things at all are concentrating on it alone. Unfortunately, they are largely ignoring looming problems with the inputs required by our civilization.

Inputs

The problem with inputs is "resource depletion". We live on a finite planet and we can really access only a small part of it—the lower part of the atmosphere, the oceans and a few thousand feet at the top of the crust. Within that volume, there are finite supplies of the resources that we rely on.

Several problems result from the way we access and use those resources.

We generally access the lowest hanging fruit first. This means that the most convenient, easily accessible and highest quality resources get used up first. That makes sense as far as it goes, but it means as time goes by we are forced to use less easily accessible and lower quality resources. This takes more energy and more complex equipment, and is more costly.

Many of the resources we rely on are non-renewable—there is a finite amount of them on this planet, and "they" aren't making any more. Further, we use them in very wasteful ways. It is important to be aware here that, even at best, there is always some irreducible waste in our use of any resource, but currently we tend to make things, use them once and throw them "away". This means that depletion of many resources is happening thousands of times more quickly than it really needs to, and as I said in the section on outputs, that waste is accumulating in the environment.

Some of the resources we use are renewable, but the processes by which they are renewed work at a limited rate. We are using many of these so called renewable resources at greater than their replacement rate, and so they too are becoming depleted.

Conventional economists will tell you that when a resource starts to get rare, its price goes up, encouraging the development of substitutes. This is true to some limited extent, but many of the most critical resources simply have no viable substitutes. Not unless we are willing to make significant and unwelcome changes to the way we live.

At this point, we should look at some specific resources and the unique problems each of them presents.

Energy, Fossil fuels

Despite what conventional economists would tell you, energy (not money) is actually the keystone resource for our economy. Nothing happens inside our civilization without energy as an input and degraded energy (waste heat) as an output. Money functions as a medium of exchange, a unit of account and a store of value, all of which is very useful, but energy is what makes the economy function and grow. About 80% of that energy currently comes from fossil fuels (primarily coal, oil and natural gas). The remaining 20% comes from sources that we can only access using equipment that is both made using fossil fuels and powered by them.

So, our civilization is utterly dependent on having a cheap and abundant supply of fossil fuels. "Peak Oil" enthusiasts have been saying for decades now that we'll soon run out of oil and things will come to a grinding halt. In fact, though, there are still large quantities of hydrocarbons to be found in the earth's crust, so you might ask, "What's the problem?"

Well, there are two problems with continuing to burn fossil fuels.

One is the consequences for the climate of burning hydrocarbons and releasing ever larger amounts of carbon dioxide into the atmosphere. This is a very serious problem, for which we are having trouble finding and implementing any sort of solution.

The other problem, I'll be calling it "the surplus energy problem", is in many ways more complex and more serious.

Because we use various forms of technology to access energy, many people think that technology makes energy, and with improved technology we can always make more energy. Or, in this case, access the difficult to access hydrocarbons that currently remain in the ground. But in fact, the opposite is true—technology uses energy and won't work without it.

The energy that remains after we've powered the processes used to acquire that energy is referred to as "surplus energy." For instance, the technology used to drill oil wells and pump crude oil out of the ground uses energy. Back in the day, it used to take the energy equivalent of about one barrel of oil to get 100 barrels of oil out of the ground, leaving a surplus energy equivalent to 99 barrels of oil. This is usually expressed as "Energy Returned on Energy Invested" (EROEI), in this case 100/1, giving an EROEI of 100. Another way of looking at this is to talk about the Energy Cost of Energy (ECoE). In this case that would be 1/100, or 1%. Note that both these numbers are just bare numbers without units, and most significantly without a dollar sign in front of them. The "money cost" of energy is another thing entirely and since it is influenced by speculation on future supply and by fluctuations in demand (as we have seen in 2020 during the pandemic) it is not a reliable indicator of the actual cost of energy in energy terms, or the future availability of energy.

Conventional oil discoveries have not been keeping up with depletion for some time and our use of conventional oil actually peaked in the last few years. So we have been forced to switch to lower quality and more difficult to access sources. Conventional oil today has an EROEI ranging from 10 to 30. Tight oil and gas (from fracking), heavy oil and the "dilbit" (diluted bitumen) made from tar sands all have EROEIs less than 5, or ECoEs of 20% or greater.

"So what?" you might say. As long as the net amount of energy available is sufficient to power our civilization, what's the problem? Well, it's not just the amount of energy available from any particular source that really counts, but the EROEI. Or more precisely the weighted average of the EROEIs of all the various energy sources an economy uses. That number needs to be around 15 or more to keep that economy growing.

When the average EROEI goes below 15, growth slows and eventually stops and it becomes difficult to raise enough capital to even maintain existing infrastructure. Why our civilization needs to grow is a topic for another day, but it certainly does. This is what most people are missing about energy. Yes, a country can use debt to finance access to low EROEI energy resources in order to keep the economy going. But only for a while, until its economy contracts to the point where things begin to fall apart. This is certainly the case in the US. Fracking has made sufficient energy available, at what seems like a reasonable dollar price, but the real economy is mysteriously contracting, and debt is continually growing. Both economists and politicians, while putting on a brave face, are hard pressed to do anything about it, because they don't understand the surplus energy problem.

As we saw in the section on "Outputs", there are pressing reasons not to continue burning fossil fuels. But even if that were not the case, it would not be possible to continue running a growth based industrial civilization on the low EROEI fossil energy sources now available to us. For this reason alone, collapse seems like a sure thing to me, and I would say it has been underway since oil production in the continental U.S. peaked in the early 1970s.

But, you may say, what about renewable energy sources? Like non-conventional fossil fuels there are large amounts of energy available from sources like hydro, biomass, wind, solar and so forth. A great many people today believe that renewables can replace fossil fuels and solve both our surplus energy and climate change problems. In fact it has become very unpopular to challenge that idea, but I am afraid I must do just that.

This post ened up at over 6000 words long, enough to try the patience of even my most loyal readers. So I have split it in two at this point, leaving the second half for my next post, which will pick up from here and cover renewable energy sources, ecosystem services and fossil water.



Links to the rest of this series of posts, Collapse, you say?

 

Epiconomics 102 : The Sunlight Economy

youtube-Logo-4gc2reddit-logoOff the keyboard of Albert Bates

Follow us on Twitter @doomstead666
Friend us on Facebook

Published on Peak Surfer on May 15, 2016

PeakSurfer

Discuss this article at the Economics Table inside the Diner

 
"It is green capitalism, we admit, but the gene expression for capitalism must and will change."

 

 

 

 

The adoption of The Paris Agreement by 195 countries on December 12, 2015 marks the end of the era of fossil fuels. There is no way to meet the targets laid out in this agreement without keeping 90 percent or more of remaining coal, oil and gas in the ground. The final text still has some serious gaps, and the timetable will have to speed up, but the treaty draws a red line on atmospheric CO2 we cannot cross. As science, economics and law come into alignment, a solar-powered economy is barrelling at us with unstoppable force.

Nafeez Ahmed, a former Guardian writer who now blogs the System Shift column for VICE’s Motherboard recently pondered the Energy Returned on Energy Invested (EROEI) problem with renewables and came up with something that might form the basis for smoothing the transition.

First, you have to get a sense of the scale of the driving force behind this change. Ahmed observed that since the crash in oil prices (underlying causes here) and the Paris Agreement, more than 65% of the world’s oil companies have declared bankruptcy. The Economist puts the default at $2.5 trillion. The real number is probably much higher. Following Paris, Goldman Sachs surveyed over $1 trillion in stranded assets out in the fracking fields that will never be booked. Carbon Tracker puts the likely cash that will be thrown down bad wells by the still standing 35% of fossil industry dinosaurs — and never-to-be recouped — at $2.2 trillion.

In our book, The Paris Agreement, we described why the fossil shakeout is likely to liberate huge cashflows into renewable energy, but with one giant caveat. There is significantly lower net energy (EROEI) in renewables than the fossils provided in their heyday. That augurs economic contraction no matter how you slice it.

Degrowth is already happening. Carbon Tracker identified Peabody Coal as one of those energy giants unable to pass a 2C stress test. Peabody scoffed. Six months later, Peabody went bankrupt.  There are now more solar installers than coal miners in the US and the gap widens each month.

Mark Harrington, an oil industry consultant, tells his clients now the cascading debt defaults will shake the global economy by late 2016 or early 2017 and could make the 2007-8 financial crash look like a cakewalk. Utilities are the new housing bubble.

The EROEI on Texas Spindletops was 100 to 1. The net energy produced from Canadian tar sands or Bakkan shale is less than you can get from green firewood, maybe 3 to 1. Oil rig count in the Bakkan as of this morning: zero. Lost investment exploring and drilling there? billions.

Nafeez Ahmed says:

The imperative to transition away from fossil fuels is, therefore, both geophysical and environmental. On the one hand, by mid-century, fossil fuels and nuclear power will become obsolete as a viable source of energy due to their increasingly high costs and low quality. On the other, even before then, to maintain what scientists describe as a ‘safe operating space’ for human survival, we cannot permit the planet to warm a further 2C without risking disastrous climate impacts.

Staying below 2C, the study finds, will require renewable energy to supply more than 50 percent of total global energy by 2028, “a 37-fold increase in the annual rate of supplying renewable energy in only 13 years.”

Let us leave aside the 2C discussion for now. Two degrees is in the bank and 5 degrees is what we have a slim chance of averting, assuming we can muster the collective will to plant enough trees, make soil, and stop dumping carbon into the atmosphere. Whether 4 degrees, which is likely to be reached by about mid-century, give or take 10 years, is survivable by mammals such as ourselves remains an open question. The odds do not favor our collectively recognizing the risk in time, all of us must acknowledge.

Those odds get even longer once President Trump, taking advice from the Koch brothers, Dick Cheney and Mitch "Black Lungs Matter" McConnell, appoints an Energy Task Force sometime in the first hundred days. Within a few months, Congress will attempt to bend energy economics around their political gravity well. They will superincentivize coal, nuclear and fracked gas and raise even more impossible hurdles for solar power, responsible biomass waste conversion and energy efficiency. Chances then of humans surviving another century: nil.

Trump's tweet has now been retweeted 27,761 times.

Last year the G7 set the goal of decarbonization by end of century, which, like Trump, is a formula for Near Term Human Extinction. At the Paris gathering 195 countries agreed to bounce the date to 2050, with a proviso that it could even accelerate more if needed. More will be needed.

The Bright Shining Hope

Analysts like Stanford’s Tony Seba say that solar power has doubled every year for the last 20 years and costs of photovoltaic power have dropped 22% with each doubling. If you believe these numbers, eight more doublings — by 2030 — and solar power will provide 100% of the world’s electricity at a fraction of today’s prices with significant reductions of carbon emissions. But there is a hitch.

The EROEI of solar power is not improving as quickly as the price. Energy efficiency, especially the embodied energy of components like turbine towers and rooftop arrays and the mined minerals for crystal manufacture, is substantially less than the concentrated caloric punch of oil and coal. Fossil sunlight is to sunlight as crack cocaine is to coca leaves.

And a decarbonated SMART is not your daddy’s muscle car.

That is not to say a civil society living on sunlight can’t still be very nice, and nicer, in fact, than the dirtier industrial civilization, especially if you only have a generation or two left before you go extinct to enjoy it.

All of this revolution could be accomplished, and paid for, simply by a small epigenetic hack in the DNA of central banks. They need to express the gene that prints money. As Ellen Brown explains:

"The combination of fiat money and Globalization creates a unique moment in history where the governments of the developed economies can print money on an aggressive scale without causing inflation. They should take advantage of this once-in-history opportunity . . . ."

Don't panic, and it might be a good idea to follow Ford Prefect's example of carrying a towel, in the unlikely event that the planet is suddenly demolished by a Vogon constructor fleet to make way for a hyperspace bypass.

Despite the paucity of intelligence in the throne room of the Empire, there is, however, a faint glimmer of light coming from a corner of the dungeon, should we peer farther. Ahmed latches on to Eric Toensmeier’s new book, The Carbon Farming Solution, that quotes a Rodale Institute study:

Simply put, recent data from farming systems and pasture trials around the globe show that we could sequester more than 100 percent of current annual CO2 emissions with a switch to widely available and inexpensive organic management practices, which we term ‘regenerative organic agriculture’… These practices work to maximize carbon fixation while minimizing the loss of that carbon once returned to the soil, reversing the greenhouse effect.

As we described in our books, The Biochar Solution and The Paris Agreement, it is possible to unleash the healing powers of the natural world — not by tampering further but by discerning and moving with its flows the way indigenious peoples did for eons — that doesn't just halt climate change but restores it to the pre-industrial. By using a permaculture cascade — regenerative cropping to food, feed and fiber; to protein and probiotic extracts (from waste byproducts); to biofuels (from waste byproducts); to biochar and biofertilizers (from waste byproducts); to probiotic animal supplements and industrial applications like fuel cells (from biochar) — bioeconomics can transform a dying planet into a garden world. But, again, there is a hitch.

Ahmed says:

According to a 2011 report by the National Academy of Sciences, the scientific consensus shows conservatively that for every degree of warming, we will see the following impacts: 5-15 percent reductions in crop yields; 3-10 percent increases in rainfall in some regions contributing to flooding; 5-10 percent decreases in stream-flow in some river basins, including the Arkansas and the Rio Grande, contributing to scarcity of potable water; 200-400 percent increases in the area burned by wildfire in the US; 15 percent decreases in annual average Arctic sea ice, with 25 percent decreases in the yearly minimum extent in September.

The challenge climate change poses to bioeconomics is where epigenetic agents come in. There is a permaculture army waiting in the wings. We have been training and drilling for 30 years. Cue marching entrance, stage left, with George M. Cohan’s arrangement of Yankee Doodle Dandy.

 

 

This will require more than Busby Berkeley. First, as we described here last week, we will need a change of the command switches that express civilization’s genes. This is unlikely to come from Hillary Clinton, central banks, the G7 or the International Monetary Fund — just witness the debacle at Doha in April.  It will more likely arise spontaneously from the grass roots, led by regenerative farmers, treehuggers and degrarians, but funded — massively — by institutional investors in search of safe havens from petrocollapse and failing confidence in a stale, counterproductive paradigm.

It is green capitalism, we admit, but the gene expression for capitalism must and will change.

"If you think about it, economic growth could happen through dematerialization," says Jack Buffington, a researcher at the Royal Institute of Technology in Stockholm and author of Progress, Technology and Seven Billion People: A Solution to Save Capitalism and The Recycling Myth: Disruptive Innovation to Improve the Environment.

"Think about all the different things your smart phone can do that 20 years ago you had a computer, you had a telephone. you had an alarm clock…. So, I think there is a way to transform things through the use of materials to dematerialize while at the same time leading to economic growth. Even if you tried to stop innovation you won't. What we have to push for is a model that between the environment and the economy is complementary, so we achieve goals of improving people's lives at the same time as improving the environment."

A bioeconomy is coming. Fast. There are demonstrations of it, large and small, popping up all over the world. The DNA for the global financial marketplace — our social customs for nations, currency systems and trade — has not changed. What is being transformed is the histone that occupies the space between the helices and flips the switches to turn expressions on and off. Who are the radical free agent proteins that are moving in to transform the histone?

You are.

 

Knarf plays the Doomer Blues

https://image.freepik.com/free-icon/musical-notes-symbols_318-29778.jpg

Support the Diner

Search the Diner

Surveys & Podcasts

NEW SURVEY

Renewable Energy

VISIT AND FOLLOW US ON DINER SOUNDCLOUD

" As a daily reader of all of the doomsday blogs, e.g. the Diner, Nature Bats Last, Zerohedge, Scribbler, etc… I must say that I most look forward to your “off the microphone” rants. Your analysis, insights, and conclusions are always logical, well supported, and clearly articulated – a trifecta not frequently achieved."- Joe D

Archives

Global Diners

View Full Diner Stats

Global Population Stats

Enter a Country Name for full Population & Demographic Statistics

Lake Mead Watch

http://si.wsj.net/public/resources/images/NA-BX686_LakeMe_G_20130816175615.jpg

loading

Inside the Diner

Quote from: John of Wallan on December 03, 2020, 05:07:20 PMSo 100% of these phantom ballots were for Trumpsky?JOWNo, we don't know who they were for yet... they just got the video last night. But given that Biden won ...

So 100% of these phantom ballots were for Trumpsky?JOW

So there aren't 2800 deaths a day from Covid in the US is that what you are saying?So anyone who dies from Covid is either a statistical lie or they had it coming anyway because old and sick people are expendable?I suppose the third option is medical...

Now this one takes the cake... they have video evidence of supervisors telling poll workers and two republican monitors to clear out because they are done for the day, then four people stay behind, start pulling suitcases of ballots from under a table ...

Heck yeah....

Recent Facebook Posts

No recent Facebook posts to show

Diner Twitter feed

Diner Newz Feeds

  • Surly
  • Agelbert
  • Knarf
  • Golden Oxen
  • Frostbite Falls

Quote from: UnhingedBecauseLucid on March 18, 2019 [...]

CleanTechnicaSupport CleanTechnica’s work via dona [...]

QuoteThe FACT that the current incredibly STUPID e [...]

Quote from: K-Dog on February 24, 2020, 06:23:52 P [...]

I wonder how much these coins have been debased? [...]

Precious tip of the day.....Buy silver NOW  She [...]

Scientists have unlocked the power of gold atoms b [...]

Quote from: azozeo on August 14, 2019, 10:41:33 AM [...]

I am OUT of Jury Service!  I got summoned to be a [...]

Quote from: Eddie on May 16, 2020, 10:30:30 AMQuot [...]

Quote from: RE on May 16, 2020, 08:20:06 AMQuote f [...]

Quote from: RE on May 16, 2020, 08:20:06 AMQuote f [...]

Alternate Perspectives

  • Two Ice Floes
  • Jumping Jack Flash
  • From Filmers to Farmers

Getting Out of Dodge By Cognitive Dissonance     Recently I received an email from a reader who aske [...]

Penalizing Prudence By Cognitive Dissonance     “Economy, prudence, and a simple life are the sure m [...]

Harvest at Chez Cog By Cognitive Dissonance   It became obvious to Mrs. Cog and I by early February [...]

  Perhaps a Crumble Rather Than a Collapse Chapter One By Cognitive Dissonance     “...we can endure [...]

The Flim-Flam Men by Cognitive Dissonance   I suspect if average Joe or Jane were asked to identify [...]

Event Update For 2020-12-02http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.htmlThe [...]

Event Update For 2020-12-01http://jumpingjackflashhypothesis.blogspot.com/2012/02/jumping-jack-flash-hypothesis-its-gas.htmlThe [...]

2020 - Swimming Pool Deaths2020-11-30 - Brother and sister, 33 and 31, die in swimming pool in Barberton (South Africa):http:// [...]

In the meantime, industrialised chickens – and their viruses – have come home to roost in Victoria, [...]

Based on extensive scientific research, a fictional reminder that COVID-19 is but a mild pandemic – [...]

In other words, treat COVID-19 like a dry-run for the upcoming "big one" [...]

However don't expect strikes and yellow vests to fix underlying problems [...]

Daily Doom Photo

man-watching-tv

Sustainability

  • Peak Surfer
  • SUN
  • Transition Voice

"Storytelling elevates our group skill set, but sometimes myths evolve over time and become mor [...]

"Can a global population of 8 to 10 billion people be fed, sheltered, kept healthy, and still h [...]

"70 million USAnians voted for Krusty the maniacal clown instead of Mr. Rogers. Is it that we g [...]

"Pandemic lockdowns curtailed jet travel, closed shops and schools, and reduced global dimming [...]

"Biophysical inertia, technological lock in, and the socioeconomic addictions we hear parroted [...]

The folks at Windward have been doing great work at living sustainably for many years now.  Part of [...]

 The Daily SUN☼ Building a Better Tomorrow by Sustaining Universal Needs April 3, 2017 Powering Down [...]

Off the keyboard of Bob Montgomery Follow us on Twitter @doomstead666 Friend us on Facebook Publishe [...]

Visit SUN on Facebook Here [...]

Camus didn't predict Covid, but he studied enough about pandemics throughout history to depict [...]

Sarah Chayes spent decades studying networks of corruption in the Third World. Now she's findin [...]

What extinction crisis? Believe it or not, there are still climate science deniers out there. And th [...]

My new book, Abolish Oil Now, will talk about why the climate movement has failed and what we can do [...]

A new climate protest movement out of the UK has taken Europe by storm and made governments sit down [...]

Top Commentariats

  • Our Finite World
  • Economic Undertow

In reply to Dennis L.. Dennis, a great idea. Let's refer to photons as "she". The pro [...]

In reply to Robert Firth. Robert: Thank you very much! This makes it clear why my superficial search [...]

In reply to davidinamonthorayearoradecade. O my paws and whiskers, it seems Fast Eddy has risen from [...]

In reply to Artleads. Artleads, my research indicates the poem has never been published, and the onl [...]

In reply to Gail Tverberg. Gail, William Stanley Jevons saw this crisis coming in 1906, in his book [...]

In reply to Bill Sodomsky. While it's great to read new stuff from Steve in its own right, ther [...]

Hi Steve, I'm sure that I speak for many others when I say it sure would be good to hear from y [...]

In reply to steve from virginia. Kind of like the opposite of, "Oops, there it is"? [...]

The President of the USA has the disease coronavirus. This disease is known to cause acute breathing [...]

I was born in 1947. Shortly several billion young people, around the world, will realise that my gen [...]

RE Economics

Going Cashless

Off the keyboard of RE Follow us on Twitter @doomstead666...

Simplifying the Final Countdown

Off the keyboard of RE Follow us on Twitter @doomstead666...

Bond Market Collapse and the Banning of Cash

Off the microphone of RE Follow us on Twitter @doomstead666...

Do Central Bankers Recognize there is NO GROWTH?

Discuss this article @ the ECONOMICS TABLE inside the...

Singularity of the Dollar

Off the Keyboard of RE Follow us on Twitter @doomstead666...

Kurrency Kollapse: To Print or Not To Print?

Off the microphone of RE Follow us on Twitter @doomstead666...

SWISSIE CAPITULATION!

Off the microphone of RE Follow us on Twitter @doomstead666...

Of Heat Sinks & Debt Sinks: A Thermodynamic View of Money

Off the keyboard of RE Follow us on Twitter @doomstead666...

Merry Doomy Christmas

Off the keyboard of RE Follow us on Twitter @doomstead666...

Peak Customers: The Final Liquidation Sale

Off the keyboard of RE Follow us on Twitter @doomstead666...

Collapse Fiction

Useful Links

Technical Journals

Global warming poses great challenges for forest managers regarding adaptation strategies and specie [...]

Sri Lanka is experiencing various social and environmental challenges, including drought, storms, fl [...]

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and avai [...]

Recently, assessments of global climate model (GCM) ensembles have transitioned from using unweighte [...]