AuthorTopic: Hydroponics 101  (Read 114 times)

Offline RE

  • Administrator
  • Chief Cook & Bottlewasher
  • *****
  • Posts: 28134
    • View Profile
Hydroponics 101
« on: April 10, 2017, 12:34:49 AM »
Article located by the Bots on The Daily SUN☼

http://www.fullbloomhydroponics.net/hydroponic-systems-101/

What is Hydroponics?

What is hydroponics?Hydroponics, by definition, is a method of growing plants in a water based, nutrient rich solution. Hydroponics does not use soil, instead the root system is supported using an inert medium such as perlite, rockwool, clay pellets, peat moss, or vermiculite. The basic premise behind hydroponics is to allow the plants roots to come in direct contact with the nutrient solution, while also having access to oxygen, which is essential for proper growth.

I highly recommend reading through this guide and learning as much as you can about hydroponics before you start your garden. Even if you don’t plan on growing with hydroponics, you can still learn a lot about what plants need in their various stages of growth by reading about the basics of hydroponics.

Advantages

Growing with hydroponics comes with many advantages, the biggest of which is a greatly increased rate of growth in your plants. With the proper setup, your plants will mature up to 25% faster and produce up to 30% more than the same plants grown in soil.

Your plants will grow bigger and faster because they will not have to work as hard to obtain nutrients. Even a small root system will provide the plant exactly what it needs, so the plant will focus more on growing upstairs instead of expanding the root system downstairs.

All of this is possible through careful control of your nutrient solution and pH levels. A hydroponic system will also use less water than soil based plants because the system is enclosed, which results in less evaporation. Believe it or not, hydroponics is better for the environment because it reduces waste and pollution from soil runoff.

Disadvantages

Despite the fact that a hydroponics system has so many advantages, there are actually a few disadvantages as well. The biggest factor for most people is that a quality hydroponics system of any size will cost more than its soil counterpart. Then again, dirt isn’t exactly expensive and you get what you pay for.

A large scale hydroponics system can take a lot of time to setup if you aren’t the most experienced grower. Plus, managing your hydroponics system will take a lot of time as well. You will have to monitor and balance your pH and nutrient levels on a daily basis.

The greatest risk with a hydroponics system is that something like a pump failure can kill off your plants within hours depending on the size of your system. They can die quickly because the growing medium can’t store water like soil can, so the plants are dependent on a fresh supply of water.

Types of Hydroponic Systems

The cool thing about hydroponics is that there are many different types of hydroponics systems available. Some of the best hydroponic systems on the market combine different types of hydroponics into one hybrid hydroponic system. Hydroponics is unique in that there are multiple techniques you can use to get the nutrient solution to your plants.

Deepwater Culture

Deepwater CultureDeepwater Culture (DWC), also known as the reservoir method, is by far the easiest method for growing plants with hydroponics. In a Deepwater Culture hydroponic system, the roots are suspended in a nutrient solution. An aquarium air pump oxygenates the nutrient solution, this keeps the roots of the plants from drowning. Remember to prevent light from penetrating your system, as this can cause algae to grow. This will wreak havoc on your system.

The primary benefit to using a Deepwater Culture system is that there are no drip or spray emitters to clog. This makes DWC an excellent choice for organic hydroponics, as hydroponics systems that use organic nutrients are more prone to clogs.

Nutrient Film Technique

Nutrient Film TechniqueNutrient Film Techinque, or NFT, is a type of hydroponic system where a continous flow of nutrient solution runs over the plants roots. This type of solution is on a slight tilt so that the nutrient solution will flow with the force of gravity.

This type of system works very well because the roots of a plant absorb more oxygen from the air than from the nutrient solution itself. Since only the tips of the roots come in contact with the nutrient solution, the plant is able to get more oxygen which fascilitates a faster rate of growth.

Aeroponics

Aerogarden Aeroponics SystemAeroponics is a hydroponics method by which the roots are misted with a nutrient solution while suspended in the air. There are two primary methods to get the solution to the exposed roots. The first method involves a fine spray nozzle to mist the roots. The second method uses what’s called a pond fogger. If you decide to use a pond fogger then make sure you use a Teflon coated disc, as this will reduce the amount of maintenance required.

You may have heard of the AeroGarden, which is a commercialized aeroponics system. The AeroGarden is an excellent entry point to aeroponics. It’s a turn-key system that requires little setup. It also comes with great support and supplies to get you started.

Wicking

Hydroponic Wick SystemWicking is one of the easiest and lowest costing methods of hydroponics. The concept behind wicking is that you have a material, such as cotton, that is surrounded by a growing medium with one end of the wick material placed in the nutrient solution. The solution is then wicked to the roots of the plant.

This system can be simplified by removing the wick material all together and just using a medium that has the ability to wick nutrients to the roots. This works by suspending the bottom of your medium directly in the solution. We recommend using a medium such as perlite or vermiculite. Avoid using mediums such as Rockwool, coconut coir, or peat moss because they may absorb too much of your nutrient solution which can suffocate the plant.

Ebb & Flow

Ebb and Flow SystemAn ebb & flow hydroponics system, also known as a flood and drain system, is a great system for growing plants with hydroponics. This type of system functions by flooding the growing area with the nutrient solution at specific intervals. The nutrient solution then slowly drains back into the reservoir. The pump is hooked to a timer, so the process repeats itself at specific intervals so that your plants get the desired amount of nutrients.

An ebb & flow hydroponics system is ideal for plants that are accustomed to periods of dryness. Certain plants flourish when they go through a slight dry period because it causes the root system to grow larger in search of moisture. As the root system grows larger the plant grows faster because it can absorb more nutrients.

Drip System

Drip SystemA hydroponic drip system is rather simple. A drip system works by providing a slow feed of nutrient solution to the hydroponics medium. We recommend using a slow draining medium, such as Rockwool, coconut coir, or peat moss. You can also use a faster draining medium, although you will have to use a faster dripping emitter.

The downside to a system like this is that the drippers / emitter are famous for clogging. We prefer not to use drip systems, but it can be an effective method for growing if you can avoid the clogs that plague this type of system. The reason the system gets clogged is because particles from nutrients that build up in the emitter. Systems that use organic nutrients are more likely to have this kind of issue.

Useful Tips

  • We highly recommend changing the nutrient solution in your reservoir every two to three weeks.
  • Keep the water temperature in your reservoir between 65 and 75 degrees. You can maintain the water temperature by using a water heater or a water chiller.
  • An air pump with an air stone connected by flexible tubing can help increase circulation and keep your nutrient solution oxygenated.
  • If your plant doesn’t look healthy, either discolored or distorted, then the first thing you should check and adjust is the pH. If you determine that the pH is not the problem then flush your system with a solution like Clearex.
  • We recommend following the feeding cycle provided by the manufacturer of your nutrients.
  • Flush, clean, and sterilize your entire system after you finish a growing cycle. Drain your reservoir and remove any debris, then run your entire system for about a day with a mix of non-chlorine bleach and water. Use 1/8th of a cup of non-chlorine bleach for every gallon of water. Then drain your system and flush it thoroughly with clean water to remove any excess bleach.

Why Choose Hydroponics?

Hydroponics is an excellent choice for all types of growers. It is a great choice because it gives you the ability to meticulously control the variables that effect how well your plants grow. A fine tuned hydroponic system can easily surpass a soil based system in plant quality and amount of produce yielded.

If you want to grow the biggest, juiciest, yummiest plants you can possible imagine, then hydroponics is the right choice for you. It may seem intimidating at first with all the equipment and work involved, but it will all seem simple enough once you get the hang of the basics. Start small, keep it simple, and your hydroponic system will never cease to amaze!

SAVE AS MANY AS YOU CAN

Offline RE

  • Administrator
  • Chief Cook & Bottlewasher
  • *****
  • Posts: 28134
    • View Profile
Maximizing yields per area in hydroponics
« Reply #1 on: April 21, 2017, 08:30:43 AM »
http://scienceinhydroponics.com/2017/04/maximizing-yields-per-area-in-hydroponics.html


Maximizing yields per area in hydroponics


Since the 1940's hydroponics - which I use to talk about a broad variety of soilless growing methods - have promised to deliver better plant yields than soil culture with less water usage and higher fertilizer efficiency. However there are many different types of soilless cultures that vary in their initial cost, media used, irrigation method used and potential for yield. Today I want to talk about the decisions that need to be made if you want to maximize yields in a hydroponic crop and the compromises that you may have to make in order to get there.


There are mainly two ways in which yields can be increased in crops. The first is to increase the amount of production you can achieve per plant and the second is to increase the amount of plants you can have per area. Maximizing crop production requires using methods that allow you to reach the best compromise between these two, maximize the product of plants per area with production per plant. This often means not having the largest amount of plants you could possibly grow per square meter and not having the largest possible yields you could have per plant.

Assuming that plants are getting adequate lighting and carbon dioxide there are two things that can be done to maximize the amount of yield per plant. The first is to ensure that plants can get optimum contact with nutrient solution as often as possible. This means that nutrient solution should always be saturated with oxygen and that irrigation should happen as often as possible. This ideally means that the media should not allow for any waterlogging but should allow the solution to flow freely and constantly. The second is that the nutrient solution should contain adequate amounts of all nutrients - all within the plant's sufficiency ranges - with adequate temperature, pH and EC values. The optimum nutrient ratios in solution depend on the plant being grown and they can play a substantial role in getting better yields per plant, especially in flowering crops. Here are some scientific articles with some experiments about some of the above (1, 2, 3, 4, 5, 6).

A typical problem when maximizing yields per plant is that this immediately means larger energy expenditure. It often means close to constant irrigation systems with highly efficient oxygen pumps. It also means potentially more expensive media - such as expanded clays or rockwool - with closed systems where solutions need to be closely monitored. Systems of this sort are more vulnerable to power outages and they are much less forgiving with grower mistakes. Plants are much more dependent on the ideal conditions being created around them and deviations from these conditions can eliminate any potential advantages that were obtained when going for this system class.

Our next area of yield maximization is to increase the number of plants per area. To do this we basically need to increase two things: light and ventilation. The main limiting factor in having more plants is the light that they can receive so either changing to systems where light can be better distributed - such as growing towers - or using more lights can alleviate this problem. Some growers have even used high power LED strips between plants to fix this issue. Since plants also exhaust carbon dioxide around their leaves we also need to ensure we have stronger ventilation to ensure none of our plants are getting starved. Increasing plant density also increases the propensity of our plants to catch and transmit diseases so environmental manipulations like lower humidity are often coupled with increases in density to decrease these risks. See these articles for more on yields, light and density (1, 2, 3, 4).


Increasing plants per area automatically decreases yields after one point but it is often the case that you can get larger final yields per area by compromising some yield per plant in the process. Even if plants yield 10% less this might be worth it if you can include 2 more plants for every 10 within your hydroponic crop. The key to maximizing yields per area is to find how far you can push this before getting substantial issues that may dramatically decrease plant yields.

It is worth noting that steps taken to maximize yields are also often steps taken in making the crop more susceptible to problems. While lower yielding setups, like for example run to waste setups with sparse plant density, are often easy to manage and very forgiving, more technical setups like closed loop constant irrigation systems at high plant densities can be much better yielding but much more prone to problems, requiring much closer monitoring and attention. This is why many growers might get better yields with setups with lower yielding potential, because their mistakes are punished much less harshly under these conditions.
SAVE AS MANY AS YOU CAN

 

Related Topics

  Subject / Started by Replies Last post
6 Replies
3784 Views
Last post January 08, 2013, 02:33:02 AM
by travelling_without_moving
0 Replies
91 Views
Last post June 24, 2017, 12:01:19 AM
by RE